skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kirsch, Bastian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cold pools formed by precipitating convective clouds are an important source of mesoscale temperature variability. However, their sub‐mesoscale (100 m–10 km) structure has not been quantified, impeding validation of numerical models and understanding of their atmospheric and societal impacts. We assess temperature variability in observed and simulated cold pools using variograms calculated from dense network observations collected during a field experiment and in high‐resolution case‐study and idealized simulations. The temperature variance in cold pools is enhanced for spatial scales between ∼5 and 15 km compared to pre‐cold pool conditions, but the magnitude varies strongly with cold pool evolution and environment. Simulations capture the overall cold pool variogram shape well but underestimate the magnitude of the variability, irrespective of model resolution. Temperature variograms outside of cold pool periods are represented by the range of simulations evaluated here, suggesting that models misrepresent cold pool formation and/or dissipation processes. 
    more » « less